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1 INTRODUCTION

Let 𝜏 ∈ ℌ, the complex upper half plane. In a famous work, Fenny Rankin and Peter Swinnerton-
Dyer showed that all the zeros of the Eisenstein series

𝐸𝑘(𝜏) =
1

2

∑
𝑚,𝑛∈ℤ
(𝑚,𝑛)=1

(𝑚𝜏 + 𝑛)−𝑘 (𝑘 ⩾ 4 even, (𝑚, 𝑛) ∶= gcd(𝑚, 𝑛)) (1)
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for the full modular group Γ = SL2(ℤ) lie on Γ-translates of the unit circle [9]. The main idea of
their (only one-page) proof is that 𝑒i𝑘𝜃∕2𝐸𝑘(𝑒i𝜃) is a real-valued function for 𝜃 ∈ (𝜋∕3, 2𝜋∕3) and
that this function is well approximated by a cosine, that is,

𝑒i𝑘𝜃∕2𝐸𝑘(𝑒
i𝜃) = 2 cos 𝑘𝜃∕2 + 𝑅(𝜃).

The result follows as the weighted number of zeros of 𝐸𝑘 in the standard fundamental domain
is 𝑘

12
(by the modularity of 𝐸𝑘; see Section 2.1), the cosine has a corresponding number of sign

changes and the remainder 𝑅 satisfies |𝑅| < 2.
For 𝑘 = 2, the above sum (1) does not converge absolutely. However, one can extend the def-

inition of the Eisenstein series by the Eisenstein summation procedure, or, equivalently, by the
𝑞-expansion

𝐸𝑘(𝜏) ∶= 1 + 𝑐𝑘
∑
𝑛⩾1

𝜎𝑘−1(𝑛) 𝑞
𝑛 (𝑘 ⩾ 2, 𝑞 = 𝑒2𝜋i𝜏),

where 𝜎𝑘−1(𝑛) =
∑
𝑑∣𝑛 𝑑

𝑘−1 is the-well known divisor sum and 𝑐𝑘 is the constant 𝑐𝑘 =
(−2𝜋i)𝑘

𝜁(𝑘)(𝑘−1)!
.

Note that this 𝑞-expansion is nontrivial, also for odd 𝑘. Hence, as a by-product, we now have
attained a definition of the main object of study in this work, that is, the Eisenstein series of odd
weight 𝑘. In contrast to the evenweight Eisenstein series, which for 𝑘 ⩾ 4 ismodular and for 𝑘 = 2
is quasimodular, the odd weight Eisenstein series are not (quasi)modular. The odd weight Eisen-
stein series are holomorphic quantum modular forms, a much weaker notion recently defined by
Zagier [12, 14].
Another, more intrinsic, definition of the even and odd weight Eisenstein series is as follows

[3]. Let 𝐺𝑘 be given by

𝐺𝑘(𝜏) ∶=
∑e

𝜇≻0

1

𝜇𝑘
(𝑘 ⩾ 2), (2)

where 𝜇 = 𝑚𝜏 + 𝑛 ∈ ℤ𝜏 + ℤ and the total order≻ onℤ𝜏 + ℤ is given by 𝜇 ≻ 0 if𝑚 > 0 or if𝑚 = 0

and 𝑛 > 0, and 𝜇 ≻ 𝜈 if 𝜇 − 𝜈 ≻ 0. In case 𝑘 = 2, the sum does not converge absolutely, and we
apply the Eisenstein summation procedure

∑e
𝜇≻0 ∶=

∑
𝑚=0,𝑛>0 +

∑
𝑚>0

∑
𝑛∈ℤ. Then,

𝐺𝑘 = 𝜁(𝑘) 𝐸𝑘 (𝑘 ⩾ 2).

If 𝐸𝑘 is not a modular form, there seems a priori neither a reason for an interesting distribution
of its zeros nor machinery to count these zeros. Namely, observe that for 𝑘 = 2 and odd 𝑘, the
zeros of 𝐸𝑘 are not invariant under the modular group Γ, nor is the number of zeros independent
of the choice of a fundamental domain. To our surprise, both concerns can be overcome. For the
quasimodular Eisenstein series 𝐸2, two groups of authors independently determined the distribu-
tion of its zeros [6, 13], namely, the centers of the Ford circles form a high-precision approximation
for the location of these zeros. Both works build on a tool, developed in different works of Sebbar
(e.g., [2]), which then later was used to determine the distribution of the zeros of derivatives of
all even weight Eisenstein series in [5] and of quasimodular forms by the authors of the present
paper [11].
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TABLE 1 The value of 𝑁𝜆(𝐸𝑘).

k mod 12 |𝝀| ⩽ 𝟏

𝟐
, 𝟏

𝟐
< |𝝀| ⩽ 𝟏, |𝝀| > 𝟏

1 ⌊ 𝑘

12
⌋ ⌊ 𝑘

12
⌋ ⌊ 𝑘

12
⌋

3 ⌈ 𝑘

12
⌉ ⌊ 𝑘

12
⌋ ⌊ 𝑘

12
⌋

5 ⌈ 𝑘

12
⌉ ⌈ 𝑘

12
⌉ ⌊ 𝑘

12
⌋

7 ⌊ 𝑘

12
⌋ ⌊ 𝑘

12
⌋ ⌈ 𝑘

12
⌉

9 ⌊ 𝑘

12
⌋ ⌈ 𝑘

12
⌉ ⌈ 𝑘

12
⌉

11 ⌈ 𝑘

12
⌉ ⌈ 𝑘

12
⌉ ⌈ 𝑘

12
⌉

In this paper, we show how to use the ideas of Rankin and Swinnerton-Dyer to determine the
distribution of zeros of the odd weight Eisenstein series. These ideas have been applied in many
works on zeros of modular forms, among which in [8] to certain Poincaré series, and in [10] to
show that cusp forms of the form 𝐸𝑘𝐸𝓁 − 𝐸𝑘+𝓁 (with 𝑘,𝓁 ⩾ 4 even and sufficiently large) have
all zeros on the boundary of the fundamental domain. By using these ideas, we bypass the tool of
Sebbar, which is not available for the non-quasimodular odd weight Eisenstein series.
Write 𝑁𝜆(𝑓) for the weighted number of zeros of 𝑓 in 𝛾 , where 𝜆 is related to 𝛾 = (

𝑎 𝑏
𝑐 𝑑

)
∈ Γ

by 𝜆(𝛾) = 𝜆 = −𝑑

𝑐
∈ ℙ1(ℚ), and  is the closure of the standard fundamental domain for Γ =

SL2(ℤ) (see Section 2.1). Recall 𝑁𝜆(𝐸𝑘) =
𝑘

12
for even 𝑘. Now, for odd 𝑘, the number 𝑘

12
is a good

approximation for the number of zeros of 𝐸𝑘 within some fundamental domain; more precisely,
either rounding 𝑘

12
up or rounding it down, gives the exact number of zeros.

Theorem 1.1. For all odd 𝑘 ⩾ 3 and all 𝜆 ∈ ℙ1(ℚ), we have

||||𝑁𝜆(𝐸𝑘) − 𝑘

12

|||| ⩽ 3

4
.

More precisely, the value𝑁𝜆(𝐸𝑘), depending on 𝑘 (mod 12) and |𝜆|, can be found in Table 1.
Inspired by Rankin and Swinnerton-Dyer, for the standard fundamental domain (𝜆 = ∞), this

result is proven by writing

𝐸𝑘(𝜏) = 1 +
1

𝜏𝑘
+

1

(𝜏 + 1)𝑘
+

1

(𝜏 − 1)𝑘
+ 𝑅𝑘(𝜏) (𝜏 ∈ ),

where the remainder 𝑅𝑘 decreases exponentially as 𝑘 → ∞ (uniformly in 𝜏). It turns out that
these four terms 1 + 𝜏−𝑘 + (𝜏 + 1)−𝑘 + (𝜏 − 1)−𝑘 determine the distribution of the zeros of𝐸𝑘 in .
Similarly, we obtain a suitable approximation for 𝐸𝑘 in 𝛾 , where the approximation depends on
𝛾 ∈ SL2(ℤ).
Note that for odd 𝑘, the function 𝑒i𝑘𝜃∕2𝐸𝑘(𝑒i𝜃) is no longer real-valued for real 𝜃. Accordingly,

the zeros of 𝐸𝑘 in  for odd 𝑘 do not lie on the unit circle. In this case, all zeros lie arbitrarily close
to the unit circle (as 𝑘 → ∞).

Theorem 1.2. For all odd 𝑘 ⩾ 3, all zeros 𝑧 of 𝐸𝑘 in  satisfy

1 < |𝑧| < 4 1𝑘 .
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4 of 27 VAN ITTERSUM and RINGELING

For even 𝑘, the Eisenstein series 𝐸𝑘 equals up to a multiplicative constant the series

𝔾𝑘(𝜏) ∶= −
𝐵𝑘
2𝑘

+
∑
𝑚,𝑟⩾1

𝑚𝑘−1𝑞𝑚𝑟 (𝑘 ⩾ 1, 𝐵𝑘 is the 𝑘th Bernoulli number).

This is a consequence of the fact that the even zeta values are given by 𝜁(𝑘) = 𝐵𝑘
2𝑘

(−2𝜋i)𝑘

(𝑘−1)!
. For odd

values of 𝑘, this formula is false; evenmore, it is expected that all odd zeta values are algebraically
independent of each other and of 𝜋. Still, 𝔾𝑘 is a well-defined holomorphic function for all 𝑘 ⩾ 1.
Recall 𝐵𝑘 = 0 for 𝑘 ⩾ 3 odd. Hence, 𝔾𝑘 equals (up to a multiplicative constant) the lattice sum

∑
𝜇≫0
(𝜇)=1

1

𝜇𝑘
= 𝐸𝑘(𝜏) − 1 =

(−2𝜋i)𝑘

𝜁(𝑘) (𝑘 − 1)!
𝔾𝑘(𝜏) (𝑘 ⩾ 3 odd), (3)

where 𝜇 = 𝑚𝜏 + 𝑛 ∈ ℤ𝜏 + ℤ, (𝜇) ∶= gcd(𝑚, 𝑛) and the partial order ≫ on ℤ𝜏 + ℤ is given by
𝜇 ≫ 0 if 𝑚 > 0 and 𝜇 ≫ 𝜈 if 𝜇 − 𝜈 ≫ 0. The distribution of the zeros of 𝔾𝑘 in  (𝑘 odd) is rem-
iniscent of those of 𝐸′𝓁 (𝓁 even), both of which admit their zeros on the sides 𝑧 = ±1

2
of the

fundamental domain. In contrast, if 𝛾 does not fix i∞, the series 𝔾𝑘 and 𝐸′𝓁 have a completely
different distribution of zeros in 𝛾 . In fact, 𝔾𝑘 has exactly the same number of zeros in 𝛾 as 𝐸𝑘,
unless 𝜆(𝛾) ∈ {0, ±1,∞}.

Theorem 1.3. For all odd 𝑘 ⩾ 3 and 𝜆 ∈ ℙ1(ℚ)∖{0, ±1,∞}, we have

𝑁𝜆(𝔾𝑘) = 𝑁𝜆(𝐸𝑘).

Theorem 1.4. The weighted number of zeros of 𝔾𝑘 (𝑘 ⩾ 3 odd) in  equals

𝑁∞(𝔾𝑘) =

{⌈𝑘
6

⌉
if 𝑘 ≡ 3, 5, 11 mod 12⌊𝑘

6

⌋
if 𝑘 ≡ 1, 7, 9 mod 12.

All these zeros are located on the vertical boundaries{
±
1

2
+ i𝑡 ∶ 𝑡 ⩾

1

2

√
3
}
∪ {i∞}.

Our results are illustrated in Figure 1.

Remark.

(i) Let 𝛾 ∈ Γ. Unless 𝜆(𝛾) ∈ {±1,∞}, the zeros of 𝔾𝑘 are located in the interior of 𝛾 . Note that
𝜆(𝛾) = ∞ corresponds to the zeros of 𝔾𝑘 in  in Theorem 1.4 above. If 𝜆(𝛾) = ±1, the zeros
of 𝔾𝑘 lie on 𝛾 with  the intersection of 𝜕 with the unit circle (defined in Section 2.1).

(ii) The zeros of 𝐸𝑘 and 𝐸𝑘+12 are known to interlace on the unit circle for angles 𝜃 with
1

2
𝜋 <

𝜃 < 2

3
𝜋 if 𝑘 is even [4, 7]. Numerical computations suggest the same interlacing property

holds for the arguments of the zeros of 𝐸𝑘 and 𝐸𝑘+12 in  . Moreover, the zeros of 𝔾𝑘 and
𝔾𝑘+6 in  seem to interlace on the vertical boundaries.
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ON THE ZEROS OF ODDWEIGHT EISENSTEIN SERIES 5 of 27

F IGURE 1 Zeros of the Eisenstein series 𝐸23 and 𝔾23 in fundamental domains 𝛾 with 𝜆(𝛾) = 0, ± 1

2
, ±1,∞.

Note that the zero of 𝔾23 at the cusp at infinity is not displayed. Moreover, on these scales, one cannot observe
that the zeros of 𝐸23 are very close but not on the unit circle, whereas 𝔾23 admits zeros (exactly) on the side of  .
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6 of 27 VAN ITTERSUM and RINGELING

F IGURE 2 The fundamental domain.

(iii) Upon agreeing that 𝑐1 =
−2𝜋i

𝜁(1)
= 0, that is, 𝐸1 ≡ 1, Theorem 1.1 and Theorem 1.2 trivially

extend to 𝑘 = 1. In contrast, Theorem 1.3 and Theorem 1.4 are false for 𝔾1; it remains a
nontrivial interesting open question to describe the distribution of its zeros. Based on our
numerical experiments, it is not clear whether 𝑁𝜆(𝔾1) is piecewise constant in 𝜆. Also, note
that some authors consider 𝔾1 with the different convention for the Bernoulli number 𝐵1,
that is, they define 𝔾1 with constant term −1

4
rather than 1

4
.

In Section 2, we define the counting function𝑁𝜆 and prove all results on zeros in , that is, The-
orem 1.2 and Theorem 1.4. In Section 3, we extend these results to all Γ-translates of the standard
fundamental domain and prove Theorem 1.1 and Theorem 1.3.

2 ZEROS IN THE STANDARD FUNDAMENTAL DOMAIN

2.1 Preliminaries

The fundamental domain
Let ℌ = {𝑧 ∈ ℂ ∣ Im(𝑧) > 0} be the complex upper half plane, ℌ∗ = ℌ ∪ ℙ1(ℚ) be the extended
upper half plane and

 ∶=
{
𝑧 ∈ ℌ ∶ |𝑧| ⩾ 1,−1

2
⩽ Re (𝑧) ⩽

1

2

}
∪ {i∞}

the standard (closed) fundamental domain for the action of Γ = SL2(ℤ) on ℌ∗, where i∞ is the
point [1 ∶ 0] ∈ ℙ1(ℚ) at infinity (See Figure 2).
Moreover, we write ,, and  for the circular part, left vertical half-line, and right vertical

half-line of the boundary 𝜕 of  , that is, 𝜕 =  ∪  ∪ with

 ∶=
{
𝑧 ∈ ℌ ∶ |𝑧| = 1,−1

2
⩽ Re (𝑧) ⩽

1

2

}
,
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ON THE ZEROS OF ODDWEIGHT EISENSTEIN SERIES 7 of 27

 ∶=
{
𝑧 ∈ ℌ ∶ |𝑧| ⩾ 1, Re (𝑧) = −1

2

}
∪ {i∞},

 ∶=
{
𝑧 ∈ ℌ ∶ |𝑧| ⩾ 1, Re (𝑧) = 1

2

}
∪ {i∞}.

We orientate these curves such that 𝜕 is positively orientated. Write 𝜌 ∶= −1

2
+ i

2

√
3. To 𝜏 ∈  ,

we associate the following weight:

𝑤(𝜏) ∶=

⎧⎪⎪⎨⎪⎪⎩

1

6
𝜏 ∈ {𝜌, 𝜌 + 1}

1

2
𝜏 ∈ 𝜕∖{𝜌, 𝜌 + 1, i∞}

1 𝜏 ∈ (∖𝜕) ∪ {i∞}.

We extend 𝑤 toℌ ∪ ℙ1(ℚ) under the action of Γ, that is, 𝑤(𝛾𝜏) = 𝑤(𝜏) for all 𝛾 ∈ Γ and 𝜏 ∈  .
Order of vanishing at a cusp
Let 𝑓 ∶ ℌ → ℂ be a holomorphic function with some associated weight 𝑘. The corresponding
slash action of weight 𝑘 is defined by

𝑓|𝛾(𝜏) ∶= (𝑐𝜏 + 𝑑)−𝑘𝑓(𝛾𝜏) (𝛾 =
(
𝑎 𝑏
𝑐 𝑑

)
∈ Γ), (4)

where 𝛾 acts on ℌ by Möbius transformations. Note that the element −1 =
(
−1 0
0 −1

)
∈ Γ acts

trivially onℌ, but 𝑓|(−1) = −𝑓 is nontrivial for odd 𝑘.
We say that 𝑓 is holomorphic at infinity if 𝑓 admits a Fourier expansion 𝑓 =

∑
𝑛⩾0 𝑎𝑛 𝑞

𝑛 (with
𝑞 = 𝑒2𝜋i𝜏) for some 𝑎𝑛 ∈ ℂ. Moreover, we say that 𝑓 is well behaved at a cusp 𝛼 ∈ ℙ1(ℚ), if

𝜈𝛼(𝑓) ∶= lim
𝑟→∞∫

1
2
+i𝑟

− 1
2
+i𝑟

𝜕

𝜕𝜏
log(𝑓|𝛾(𝜏)) d𝜏,

where 𝛾 ∈ Γ is such that 𝛾(i∞) = 𝛼, is a (well-defined) nonnegative integer. In that case, we
call 𝜈𝛼(𝑓) the order of vanishing of 𝑓 at the cusp 𝛼. Observe that if 𝑓 is nontrivial and holomorphic
at infinity, then

𝜈∞(𝑓) = min{𝑛 ⩾ 0 ∣ 𝑎𝑛 ≠ 0}. (5)

Lemma 2.1. For all odd 𝑘 ⩾ 3, one has 𝜈∞(𝐸𝑘) = 0 and 𝜈∞(𝔾𝑘) = 1. Moreover, for all 𝛼 ∈
ℙ1(ℚ)∖{∞}, one has

𝜈𝛼(𝐸𝑘) = 0 = 𝜈𝛼(𝔾𝑘).

Proof. The first part of the statement follows directly from (5). For the other cusps, using the series
expansion (2) and (3) for 𝑓 = 𝐸𝑘 and 𝑓 = 𝔾𝑘, respectively, one has for 𝛾 ∈ Γ (with 𝛾∞ ≠∞) that
𝑓|𝛾(𝜏) → ±1 as Im 𝜏 → ∞, whereas (𝑓|𝛾)′(𝜏) → 0. Hence, the odd weight Eisenstein series 𝐸𝑘
does not vanish at a cusp and 𝔾𝑘 does not vanish at another cusp than at infinity. □
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8 of 27 VAN ITTERSUM and RINGELING

The counting function
Let 𝛾 ∈ Γ be given and 𝑓 ∶ ℌ → ℂ be holomorphic and well behaved at the cusps corresponding
to 𝛾. Write 𝜆(𝛾) = 𝜆 = 𝛾−1(∞). We define the weighted number of zeros of 𝑓 in 𝛾 to be

𝑁𝜆(𝑓) ∶=
∑
𝜏∈𝛾

𝑤(𝜏) 𝜈𝜏(𝑓),

where 𝑤(𝜏) is the weight of 𝜏 and 𝜈𝜏(𝑓) the order of vanishing of 𝑓 at 𝜏 (extended to the cusps as
above). Note that 𝑁𝜆(𝑓) is well defined, that is, depends on 𝜆 rather than 𝛾 since 𝑓 is 1-periodic.
For modular forms 𝑓 of weight 𝑘, such as 𝑓 = 𝐸𝑘 with 𝑘 even, the valence formula states that

𝑁𝜆(𝑓) =
𝑘

12
for all 𝜆 ∈ ℙ1(ℚ). Later, we make use of the following lemma.

Lemma 2.2. If 𝑓 ∶ ℌ → ℂ is holomorphic, well behaved at the cusps and admitting a Fourier
expansion 𝑓 =

∑
𝑛⩾0 𝑎𝑛 𝑞

𝑛 with real Fourier coefficients 𝑎𝑛, then

𝑁𝜆(𝑓) = 𝑁−𝜆(𝑓)

for all 𝜆 ∈ ℚ.

Proof. Note that

𝑓(−𝜏) =
∑
𝑛⩾0

𝑎𝑛 𝑒
−2𝜋𝑖𝜏 = 𝑓(𝜏).

Hence, 𝜏 is a zero of 𝑓 if and only if −𝜏 is a zero of 𝑓.
Now, let 𝛾 =

(
𝑎 𝑏
𝑐 𝑑

)
∈ Γ be given and write �̃� =

(
𝑎 −𝑏
−𝑐 𝑑

)
∈ Γ. Suppose 𝜏 ∈ 𝛾 . Then, 𝛾−1𝜏 ∈  .

As  is invariant under 𝜏 ↦ −𝜏, this implies −𝛾−1𝜏 ∈  . Now,

−𝛾−1𝜏 =
−𝑑𝜏 + 𝑏

−𝑐𝜏 + 𝑎
= �̃�−1(−𝜏).

Hence, −𝜏 ∈ �̃� . As 𝜆(𝛾) = −𝜆(�̃�), the statement follows. □

Variation of the argument
Let 𝑓 ∶ ℌ → ℂ be a holomorphic function with some natural weight 𝑘. Then, we define 𝑓(𝜏) ∶=
𝜏𝑘∕2𝑓(𝜏). Often, |𝜏| = 1 and we write

𝑓(𝜃) ∶= 𝑓(𝑒i𝜃) = 𝑒𝑘i𝜃∕2𝑓(𝑒i𝜃) for 𝜃 ∈ (0, 𝜋). (6)

Suppose that 𝑓 is also holomorphic at infinity and does not admit any zeros on the boundary
𝜕 . Then, by a standard application of Cauchy’s theorem, the weighted number of zeros of 𝑓 in 
is given by

𝑁∞(𝑓) =
(
VOA + VOA + VOA

)
(𝑓) =

𝑘

12
+

(
VOA + VOA

)
(𝑓) + VOA(𝑓), (7)
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ON THE ZEROS OF ODDWEIGHT EISENSTEIN SERIES 9 of 27

where the quantity

VOA (𝑓) ∶= Re
1

2𝜋i ∫
𝑓′(𝜏)

𝑓(𝜏)
d𝜏

is the variation of the argument of 𝑓 along some oriented curve  , and (by a slight abuse of
notation), we write

VOA(𝑓) ∶= −
1

2𝜋
Im∫

2𝜋∕3

𝜋∕3

𝑓′(𝜃)

𝑓(𝜃)
d𝜃

for the variation of the argument of 𝑓. In the sequel, the following observation is crucial. Writ-
ing 𝑓(𝜏) = 𝑟(𝜏) 𝑒i𝛼(𝜏) in polar coordinates with real-analytic radius 𝑟 ∶ ℌ → ℝ⩾0 and real-analytic
argument 𝛼 ∶ ℌ → ℝ, one has

VOA (𝑓) =
𝛼(𝑠1) − 𝛼(𝑠0)

2𝜋
, (8)

where 𝑠0 and 𝑠1 are the begin- and endpoints of the curve  , respectively. Indeed, VOA (𝑓) is the
variation of the argument of 𝑓 along  .
If 𝑓 is holomorphic at infinity, then 𝑓 is 1-periodic. Hence, VOA(𝑓) + VOA(𝑓) = 0. Note

that this equation also holds if 𝑓 admits zeros on  or (by regularizing the integrals involved as
usual by small semicircles around the roots of 𝑓). Hence, we have proven the following statement.

Lemma 2.3. Let 𝑓 ∶ ℌ → ℂ be holomorphic, holomorphic at infinity and without zeros on . Then,
𝑁∞(𝑓) =

𝑘

12
+ VOA(𝑓).

Angle estimates
For 𝑥 ∈ ℝ, write ‖𝑥‖ ∶= min𝑛∈ℤ |𝑥 + 2𝜋𝑛|. Often, we make use of the following elementary
estimates.

Lemma 2.4. Let 𝑧 ∈ ℂ.

(i) If 𝑧 is an element of the open ball around 𝑧0 with radius 𝑟, then

‖‖arg(𝑧) − arg(𝑧0)‖‖ < 2𝑟|𝑧0| .
(ii) If Re 𝑧 > 𝐴 and |Im 𝑧| < 𝐵 with 𝐴, 𝐵 ∈ ℝ>0, then

‖ arg(𝑧)‖ < 𝐵

𝐴
.

2.2 Zeros of the Eisenstein series 𝑬𝒌

In this section, we compute the number of zeros of the odd weight Eisenstein series 𝐸𝑘 in the
standard fundamental domain  , that is, the number𝑁∞(𝐸𝑘) for 𝑘 odd. Recall that for 𝜇 = 𝑚𝜏 +
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10 of 27 VAN ITTERSUM and RINGELING

𝑛 ∈ ℤ𝜏 + ℤ, we write (𝜇) = (𝑚, 𝑛) for the greatest common divisor of𝑚 and 𝑛. Also, recall

𝐸𝑘(𝜏) =
∑e

𝜇≻0
(𝜇)=1

1

𝜇𝑘
=

1

𝜁(𝑘)
𝐺𝑘(𝜏) (𝑘 ⩾ 2).

From now on, assume that 𝑘 ⩾ 3 is odd. We write

𝐸𝑘(𝜏) =
∑

𝜇=𝑚𝜏+𝑛
(𝑚,𝑛)=1
𝜇≻0

1

(𝑚𝜏 + 𝑛)𝑘
= 1 +

1

𝜏𝑘
+

1

(𝜏 − 1)𝑘
+

1

(𝜏 + 1)𝑘
+ 𝑅𝑘(𝜏), (9)

where 𝑅𝑘 contains all terms in the sum (9) for which𝑚2 + 𝑛2 ⩾ 5. Then, we have (see (6) for the
definition of 𝑓 for a function 𝑓)

𝐸𝑘(𝜃) = 2 cos
1

2
𝑘𝜃 +

1(
2 cos 1

2
𝜃
)𝑘 + (−1)(𝑘+1)∕2

i(
2 sin 1

2
𝜃
)𝑘 + 𝑅𝑘(𝜃). (10)

It was estimated by Rankin–Swinnerton-Dyer that [9]

|𝑅𝑘(𝜃)| ⩽ 4
(
5

2

)−𝑘∕2
+
20

√
2

𝑘 − 3

(
9

2

)(3−𝑘)∕2
(𝑘 > 3). (11)

In particular, as we will need later, one obtains (we note, for the last time, that 𝑘 is odd)

||𝐸𝑘(𝜌) − (
1 − 𝜒(𝑘) i

√
3
)|| ⩽ 3−𝑘∕2 + 4

(
5

2

)−𝑘∕2
+
20

√
2

𝑘 − 3

(
9

2

)(3−𝑘)∕2
(𝑘 > 3), (12)

where 𝜒 ∶ ℤ → {±1} is the primitive Dirichlet character mod 3, that is,

𝜒(𝑘) ∶=

⎧⎪⎨⎪⎩
1 if 𝑘 ≡ 1 mod 3
−1 if 𝑘 ≡ −1 mod 3
0 else.

We proceed in a similar way to estimate Im𝑅𝑘. Write

𝐼𝑘(𝜏) ∶=
∑

𝑚2+𝑛2⩾5
𝑚>0,𝑛<0
(𝑚,𝑛)=1

1|𝑚𝜏 + 𝑛|𝑘 . (13)

Observe

Im
1

(𝑚𝑒i𝜃∕2 + 𝑛𝑒−i𝜃∕2)𝑘
+ Im

1

(𝑛𝑒i𝜃∕2 + 𝑚𝑒−i𝜃∕2)𝑘
= 0 (𝑚, 𝑛 ∈ ℤ).
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ON THE ZEROS OF ODDWEIGHT EISENSTEIN SERIES 11 of 27

Hence, all terms in Im𝑅𝑘(𝜃) with𝑚, 𝑛 > 0 cancel in pairs, and we obtain

Im𝑅𝑘(𝜃) =
1

i

∑
𝑚2+𝑛2⩾5
𝑚>0,𝑛<0
(𝑚,𝑛)=1

1

(𝑚𝑒i𝜃∕2 + 𝑛𝑒−i𝜃∕2)𝑘
. (14)

Therefore, |Im𝑅𝑘(𝜃)| ⩽ 𝐼𝑘(𝑒i𝜃). For large 𝑘, the following bound is slightly stronger than (11).
Lemma 2.5. For all 𝑘 ⩾ 9, we have

𝐼𝑘(𝑒
i𝜃) ⩽

4
√
10

5𝑘∕2
+

{
2 ⋅ 3−𝑘∕2 𝜃 ∈ [𝜋∕3, 𝜋∕2]

2 ⋅ 5−𝑘∕2 𝜃 ∈ [𝜋∕2, 2𝜋∕3].

Proof. For integers𝑚, 𝑛, we have

|𝑚𝑒i𝜃 + 𝑛|2 = 𝑚2 + 𝑛2 + 2𝑚𝑛 cos 𝜃 ⩾
1

2
(𝑚2 + 𝑛2)

for 𝜃 ∈ [𝜋∕3, 2𝜋∕3]. There are at most𝑁1∕2 integer solutions of the equation𝑚2 + 𝑛2 = 𝑁 when
the sign of𝑚 and 𝑛 are fixed. Picking out the terms with𝑚2 + 𝑛2 = 5 separately, we obtain

𝐼𝑘(𝑒
i𝜃) ⩽

2|𝑒i𝜃∕2 − 2𝑒−i𝜃∕2|𝑘 + ∑
𝑁⩾10

𝑁1∕2(
1

2
𝑁
)𝑘∕2 ⩽

2|𝑒i𝜃∕2 − 2𝑒−i𝜃∕2|𝑘 + 4
√
10

5𝑘∕2
,

where in the last step, we estimated the sum by an integral under the assumption that 𝑘 ⩾ 9. For
the terms with𝑚2 + 𝑛2 = 5, we have more explicitly

1|𝑒i𝜃∕2 − 2𝑒−i𝜃∕2|𝑘 =
1

(5 − 4 cos(𝜃))𝑘∕2
⩽

{
3−𝑘∕2 𝜃 ∈ [𝜋∕3, 𝜋∕2]

5−𝑘∕2 𝜃 ∈ [𝜋∕2, 2𝜋∕3]. □

Lemma 2.6. For 𝑘 ⩾ 11, the value Im𝐸𝑘(𝜃) is nonzero for
𝜋

3
⩽ 𝜃 ⩽ 2𝜋

3
.

Proof. By Lemma 2.5 and (10), for all odd 𝑘 ⩾ 9, we have

Im𝐸𝑘(𝜃) =
(−1)

𝑘+1
2(

2 sin 1

2
𝜃
)𝑘 + Im𝑅𝑘(𝜃).

Hence,

||Im𝐸𝑘(𝜃)|| ⩾
{
2−𝑘∕2 − 2 ⋅ 3−𝑘∕2 − 4

√
10 ⋅ 5−𝑘∕2 𝜃 ∈ [𝜋∕3, 𝜋∕2]

3−𝑘∕2 − (4
√
10 + 2) ⋅ 5−𝑘∕2 𝜃 ∈ [𝜋∕2, 2𝜋∕3].

For 𝑘 ⩾ 11, the right-hand side is positive. □

Let Round(𝑥) be the nearest integer to 𝑥 (if 𝑥 is a half-integer, we round up).

 20417942, 2025, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/m
tk.70004 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [02/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 of 27 VAN ITTERSUM and RINGELING

Proposition 2.7. For all odd 𝑘 ⩾ 3, we have

𝑁∞(𝐸𝑘) = Round
(
𝑘

12

)
.

Proof. As the integral VOA(𝐸𝑘) measures the variation of the argument of 𝐸𝑘 on  (see (8)),
the previous lemma implies |VOA(𝐸𝑘)| < 1

2
. Moreover, it follows from that lemma that𝑁∞(𝐸𝑘)

takes an integer value: 𝐸𝑘 does not admit a zero on , where zeros are weighted by weight 1
2
or 1

6

rather than weight 1—note that if 𝐸𝑘 has a zero 𝜏0 on , counted with weight 1
2
, also 𝜏0 + 1 is a

zero of 𝐸𝑘 on as 𝐸𝑘 is 1-periodic.
Now, by Lemma 2.3, we obtain 𝑁∞(𝐸𝑘) = Round(

𝑘

12
) if 𝑘 ⩾ 11. Using a more careful error

estimate in Lemma 2.5, one shows that the same holds for 𝑘 ∈ {3, 5, 7, 9}. □

2.3 Refined estimates for the location of the zeros

In this section, we prove Theorem 1.2, that is, we show that all zeros of 𝐸𝑘 in  tend to the unit
circle as 𝑘 → ∞. First of all, we extend the bound (11) to all |𝜏| ⩾ 1:
Lemma 2.8. For 𝑘 ⩾ 11 and 𝜏 ∈  , we have

|𝑅𝑘(𝜏)| ⩽ 6
√
5

(5∕2)𝑘∕2
.

Proof. For integers𝑚, 𝑛, we estimate

|𝑚𝜏 + 𝑛|2 = 𝑚2𝑟2 + 𝑛2 + 2𝑚𝑛𝑟 cos 𝜃 ⩾
1

2
(𝑚2 + 𝑛2),

where 𝜏 = 𝑟𝑒i𝜃 with 𝑟 ⩾ 1 and 𝜃 ∈ [𝜋∕3, 2𝜋∕3]. If,𝑁 ⩾ 5, there are at most 2𝑁1∕2 coprime integer
solutions of the equation𝑚2 + 𝑛2 = 𝑁 with𝑚 > 0. Therefore,

|𝑅𝑘(𝜏)| ⩽ ∑
𝑚>0

𝑚2+𝑛2⩾5
(𝑚,𝑛)=1

1|𝑚𝜏 + 𝑛|𝑘 ⩽
∑
𝑁⩾5

2𝑁1∕2(
1

2
𝑁
)𝑘∕2 ⩽

6
√
5

(5∕2)𝑘∕2
,

where in the last step, we estimated the sum by an integral under the assumption that 𝑘 ⩾ 11. □

In Lemma 2.6, we showed |Im𝐸𝑘| ≠ 0. Now, we prove a similar result for a slightly different
function—we consider Re𝐸𝑘 rather than Im𝐸𝑘.

Lemma 2.9. For 𝑘 ⩾ 11, 𝜃 ∈ (𝜋∕3, 2𝜋∕3) and 𝑟 ⩾ 4
1
𝑘 , we have

Re𝐸𝑘(𝑟𝑒
i𝜃) ≠ 0.
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ON THE ZEROS OF ODDWEIGHT EISENSTEIN SERIES 13 of 27

Proof. Let 𝜏 = 𝑟𝑒i𝜃. We have

1 + Re
1

𝜏𝑘
⩾ 1 −

1

𝑟𝑘

and estimate||||Re 1

(𝜏 + 1)𝑘
+ Re

1

(𝜏 − 1)𝑘

|||| ⩽ 1|𝜏 + 1|𝑘 + 1|𝜏 − 1|𝑘
=

1

(𝑟2 + 1 + 2𝑟 cos(𝜃))𝑘∕2
+

1

(𝑟2 + 1 − 2𝑟 cos(𝜃))𝑘∕2
.

Given 𝑟, the right-hand side attains itsminimumas a function of 𝜃 on the boundary of (𝜋∕3, 2𝜋∕3).
Hence, we find

||||1 + Re 1𝜏𝑘 + Re 1

(𝜏 + 1)𝑘
+ Re

1

(𝜏 − 1)𝑘

|||| ⩾ 1 − 1

𝑟𝑘
−

1

(𝑟2 + 1 + 𝑟)𝑘∕2
−

1

(𝑟2 + 1 − 𝑟)𝑘∕2

⩾ 1 −
1

𝑟𝑘
−

1

3𝑘∕2
−

1

𝑟𝑘∕2
.

If we assume that 𝑟 ⩾ 4
1
𝑘 and 𝑘 ⩾ 11, we find that the right-hand side is at least 6

√
5

(5∕2)𝑘∕2
, so that by

Lemma 2.8, we conclude that Re𝐸𝑘(𝑟𝑒i𝜃) ≠ 0. □

Proof of Theorem 1.2. For 𝑘. ⩾ 11, the statement follows directly from the previous lemma. By a
numerical approximation of the root of 𝐸𝑘 in  for 𝑘 ∈ {7, 9, 11}, we find that the result holds for
all 𝑘 ⩾ 3. □

Remark. The roots 𝑧 of 𝐸𝑘 in  satisfy 1 < |𝑧| < 𝐶1∕𝑘 for 𝐶 = 4. Though the constant 𝐶 may
certainly be improved, we do expect that an upper bound for the radius of the form 𝐶1∕𝑘 is best
possible. Note that Dimitrov’s theorem (the former Schinzel–Zassenhaus conjecture) provides a
lower bound of the same shape 𝐶1∕𝑘 for the house of polynomials of degree 𝑘, where the house is
the maximum of the absolute values of all its roots [1]. Now, the zeros of

1 +
1

𝜏𝑘
+

1

(𝜏 + 1)𝑘
+

1

(𝜏 − 1)𝑘

within provide a good approximation of the zeros of𝐸𝑘, which provides some heuristic evidence
as to why we believe that a radius of the form 𝐶1∕𝑘 is best possible.

2.4 Upper bound on the number of zeros of 𝔾𝒌

Recall

𝔾𝑘(𝜏) =
(𝑘 − 1)!

(−2𝜋i)𝑘

∑
𝜇≫0

1

𝜇𝑘
=

(𝑘 − 1)!

(−2𝜋i)𝑘𝜁(𝑘)

∑
𝜇≫0
(𝜇)=1

1

𝜇𝑘
.
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14 of 27 VAN ITTERSUM and RINGELING

Write

𝐻𝑘(𝜃) ∶= i𝑘+1Im 𝐸𝑘(𝜃).

Then,

Im (−1)(𝑘+1)∕2
(−2𝜋i)𝑘𝜁(𝑘)

(𝑘 − 1)!
�̂�𝑘(𝜃) = (−1)(𝑘+1)∕2 Im 𝐸𝑘(𝜃) − (−1)(𝑘+1)∕2 Im

1

(0 + 1 ⋅ 𝑒−𝑖𝜃∕2)𝑘

= 𝐻𝑘(𝜃) + (−1)(𝑘−1)∕2 sin(𝑘𝜃∕2). (15)

To count the number of zeros of 𝔾𝑘 in  , we first study this function𝐻𝑘.
Lemma 2.10. 𝐻𝑘 is a strictly convex positive-valued function on [𝜋∕3, 2𝜋∕3] for 𝑘 ⩾ 17.

Proof. Note that the proof of Lemma 2.6 implies that 𝐻𝑘 is positive-valued. Now, a twice-
differentiable function is convex if and only if the second derivative is nonnegative. By a similar
argument as we used to obtain (14), we find

𝐻𝑘(𝜃) = i𝑘
∑

𝑚>0,𝑛<0
(𝑚,𝑛)=1

1

(𝑚𝑒i𝜃∕2 + 𝑛𝑒−i𝜃∕2)𝑘
.

We compute the second derivative

𝐻′′
𝑘
(𝜃) = −

𝑘

4i𝑘

∑
𝑚>0,𝑛<0
(𝑚,𝑛)=1

4𝑚𝑛 − 𝑘(𝑚𝑒i𝜃∕2 − 𝑛𝑒−i𝜃∕2)2

(𝑚𝑒i𝜃∕2 + 𝑛𝑒−i𝜃∕2)𝑘+2

=
𝑘

2𝑘+4
4 + 4𝑘 cos(𝜃∕2)2

sin(𝜃∕2)𝑘+2
+ Im𝑅′′

𝑘
(𝜃).

We treat the remainder similar to Lemma 2.5. Estimate

4𝑚𝑛 ⩽ 2(𝑚2 + 𝑛2) and |𝑚𝑒i𝜃∕2 − 𝑛𝑒−i𝜃∕2|2 ⩽ 2(𝑚2 + 𝑛2).

Then, by taking out the terms with𝑚2 + 𝑛2 = 5 separately, we find

|Im𝑅′′
𝑘
(𝜃)| ⩽ 𝑘

2

𝑘(5 + 4 cos 𝜃)2 + 8

(5 − 4 cos 𝜃)𝑘+2
+
𝑘

4

∑
𝑁⩾10

(2 + 2𝑘)𝑁 ⋅𝑁1∕2(
1

2
𝑁
)𝑘∕2+1 .

Hence, for 𝜃 ∈ (𝜋∕3, 𝜋∕2), we find

|Im𝑅′′
𝑘
(𝜃)| ⩽ 𝑘

2

49𝑘 + 8

3𝑘+2
+
𝑘(𝑘 + 1)

2

4
√
10

5𝑘∕2
,
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ON THE ZEROS OF ODDWEIGHT EISENSTEIN SERIES 15 of 27

whereas for 𝜃 ∈ (𝜋∕2, 2𝜋∕3), one obtains

|Im𝑅′′
𝑘
(𝜃)| ⩽ 𝑘

2

25𝑘 + 8

5𝑘+2
+
𝑘(𝑘 + 1)

2

4
√
10

5𝑘∕2
.

Hence, we find

𝐻′′
𝑘
(𝜃) ⩾

𝑘(2𝑘 + 4)

2𝑘∕2+2
−
𝑘

2

49𝑘 + 8

3𝑘+2
−
𝑘(𝑘 + 1)

2

4
√
10

5𝑘∕2

for 𝜃 ∈ (𝜋∕3, 𝜋∕2) and

𝐻′′
𝑘
(𝜃) ⩾

1

4

𝑘(𝑘 + 4)

3𝑘∕2+1
−
𝑘

2

25𝑘 + 8

5𝑘+2
−
𝑘(𝑘 + 1)

2

4
√
10

5𝑘∕2

for 𝜃 ∈ (𝜋∕2, 2𝜋∕3). Therefore,𝐻′′
𝑘
(𝜃) > 0 for 𝜃 ∈ (𝜋∕3, 2𝜋∕3) and 𝑘 ⩾ 17. □

We now exploit the fact that Re 𝔾𝑘(𝜃) is the sum of a sine and a strictly monotonous function
as in (15), to bound the number of its zeros.

Lemma 2.11. Let 𝑘 ⩾ 1 be odd,𝐴 = [𝜋∕3, 2𝜋∕3], and ℎ ∶ 𝐴 → ℝ>0 be a continuous strictly convex
positive-valued function such that 0 < ℎ(2𝜋

3
) < 1

2

√
3. Then,

sin(𝑘𝜃∕2) + ℎ(𝜃) and sin(𝑘𝜃∕2) − ℎ(𝜃)

admit at most

2
⌊
𝑘 + 5

12

⌋
+ 𝛿𝑘≡5(6) and 2

⌊
𝑘

12

⌋
+ 2 − 𝛿𝑘≡1(6)

zeros on 𝐴, respectively.

Proof. Note that the function 𝑠𝑘 ∶ 𝜃 ↦ sin(𝑘𝜃∕2) at some point 𝜃 is either positive or convex.
Write − and + for the collection of (closed) intervals on which 𝑠𝑘 is nonpositive (convex) and
nonnegative (concave) respectively, where we assume that all intervals 𝐼 aremaximal with respect
to this property.
Now, recall that a continuous strictly convex function𝑓 admits atmost two zeros. Hence, 𝑠𝑘 + ℎ

admits at most two zeros on each interval 𝐼 ∈ −. Now, suppose 𝑘 ≡ 5 mod 6. Then, 𝐼 = [𝑎, 2𝜋
3
) ∈

− for some 𝑎. As (𝑠𝑘 + ℎ)(𝑎) = ℎ(𝑎) > 0 and 𝑓(2𝜋∕3) < 1

2

√
3 − ℎ(𝑎) < 0 in that case, there is at

most 1 zero on this interval 𝐼. Hence, 𝑠𝑘 + ℎ admits at most 2|−| − 𝛿𝑘≡5 (6) zeros. Similarly, 𝑠𝑘 − ℎ
admits at most 2|+| − 𝛿𝑘≡1 (6) zeros if 𝑘 > 1. To conclude the proof, observe that

|+| = ⌊
𝑘

12

⌋
+ 1, |−| = ⌊

𝑘 + 5

12

⌋
+ 𝛿𝑘≡5(6) . □

Lemma 2.12. For 𝑘 ⩾ 7, we have 𝑁∞(𝔾𝑘) ⩽ ⌈ 𝑘
6
⌉. Moreover, if additionally 𝑘 equals 1, 7, or 9 mod

12, we have𝑁∞(𝔾𝑘) ⩽ ⌊ 𝑘
6
⌋.
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16 of 27 VAN ITTERSUM and RINGELING

Proof. Assume 𝑘 ⩾ 7. By (12), we find

||𝐸𝑘(𝜌) − 1 + 𝜒(𝑘) i
√
3|| ⩽ 3−𝑘∕2 + 4

(
5

2

)−𝑘∕2
+
20

√
2

𝑘 − 3

(
9

2

)(3−𝑘)∕2
.

Note 𝑘 ∶= 𝐸𝑘 − 1 equals 𝔾𝑘 up to a multiplicative (imaginary) constant. Since 𝑘(𝜌) ∈ ℝi, we
conclude that arg𝑘(𝜌) = −𝜋∕2 if 𝑘 ≡ 1 mod 3 and arg𝑘(𝜌) = 𝜋∕2 if 𝑘 ≡ 2 mod 3. In case 𝑘 ≡
0 mod 3, one needs a more refined estimate. Observe

1

𝜌𝑘
+

1

(𝜌 + 1)𝑘
= 0

in this case. Now, |||||Im𝑘(𝜌) − 1

(𝜌 − 1)𝑘

||||| < 𝐼𝑘(2𝜋∕3).
As |(𝜌 − 1)−𝑘| > 𝐼𝑘(𝑒2𝜋∕3) by Lemma 2.5 and using again 𝑘(𝜌) ∈ ℝi, we obtain

arg𝑘(𝜌) =
⎧⎪⎨⎪⎩
−
1

2
𝜋 𝑘 ≡ 3 mod 12

1

2
𝜋 𝑘 ≡ 9 mod 12.

Hence,

arg �̂�𝑘(𝜌) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

3
𝜋 𝑘 ≡ 1 mod 12

0 𝑘 ≡ 3 mod 12
2

3
𝜋 𝑘 ≡ 5 mod 12

−
2

3
𝜋 𝑘 ≡ 7 mod 12

0 𝑘 ≡ 9 mod 12
−
1

3
𝜋 𝑘 ≡ 11 mod 12

and

arg �̂�𝑘(𝜌 + 1) =

⎧⎪⎪⎨⎪⎪⎩

1

6
𝜋 𝑘 ≡ 1 mod 6
1

2
𝜋 𝑘 ≡ 3 mod 6

−
1

6
𝜋 𝑘 ≡ 5 mod 6.

Also, observe𝐻𝑘(2𝜋∕3) <
1

2

√
3 by Lemma 2.5 as

𝐻𝑘(2𝜋∕3) ⩽ 3−𝑘∕2 + (4
√
10 + 2) ⋅ 5−𝑘∕2.
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ON THE ZEROS OF ODDWEIGHT EISENSTEIN SERIES 17 of 27

This enables us to obtain an upper bound for VOA(�̂�𝑘) (case by case modulo 12) using
Lemma 2.11 applied to ℎ = 𝐻𝑘. The result then follows from Lemma 2.3. □

2.5 Lower bound on the number of zeros of 𝔾𝒌

The goal of this section is to show that 𝔾𝑘 has all of its zeros on  on the vertical boundaries 
and. Following [5, Section 3], we do this by counting the number of sign changes of 𝔾𝑘. Define
𝑧𝓁 =

1

2
+ i𝑡𝓁 and 𝑡𝓁 ∶=

1

2
cot(𝜋𝓁∕𝑘), where 1 ⩽ 𝓁 ⩽ ⌊𝑘

6
⌋. Note that for such 𝓁, one has 𝑡𝓁 ⩾

√
3

2
.

Then, Theorem 1.4 will follow from the following.

Proposition 2.13.

sgn𝔾𝑘(𝑧𝓁) = (−1)
𝓁 .

Proof. We distinguish two cases, namely, (i) 3𝓁2 ⩽ 𝑘 − 1 (𝑧𝓁 is “close to i∞”) and (ii) 3𝓁2 ⩾ 𝑘 (𝑧𝓁
is “close to 𝜌”).
We start with the first case. Write

𝔾𝑘(𝜏) =

∞∑
𝑛=1

𝑢𝑛(𝜏), 𝑢𝑛(𝜏) = 𝑛𝑘−1
𝑞𝑛

1 − 𝑞𝑛
.

It turns out that the dominant contribution of𝔾𝑘(𝑧𝓁) is 𝑢𝑛(𝑧𝓁) for 𝑛 = 𝓁. More precisely, we show
that

(a) 2|𝑢𝑛+1| < |𝑢𝑛| for 𝑛 ⩾ 𝓁;
(b) 2|𝑢𝑛−1| < |𝑢𝑛| for 2 ⩽ 𝑛 ⩽ 𝓁.

Write 𝑞𝓁 = 𝑞|𝜏=𝑧𝓁 . Note 𝑒−𝜋√3 ⩽ |𝑞𝓁| < 1. For part (a), we observe that [5, Eqn. (26)](𝓁 + 1
𝓁

)𝑘−1|𝑞𝓁| ⩽ 𝑒−3∕4.
Hence, if 𝑛 ⩾ 𝓁,

|𝑢𝑛+1||𝑢𝑛| =
(
𝑛 + 1

𝑛

)𝑘−1 |𝑞𝓁| |1 − 𝑞𝑛𝓁||1 − 𝑞𝑛+1𝓁 |
⩽

(𝓁 + 1
𝓁

)𝑘−1 |𝑞𝓁| 1 + |𝑞𝓁|
1 − |𝑞𝓁|2

=
(𝓁 + 1

𝓁

)𝑘−1 |𝑞𝓁|
1 − |𝑞𝓁| ⩽ 𝑒−3∕4

(1 − 𝑒−𝜋
√
3)
<
1

2
.

For part (b), we observe that [5, Eqn. (29)](𝓁 − 1
𝓁

)𝑘−1|𝑞𝓁| ⩽ 𝑒−1.
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18 of 27 VAN ITTERSUM and RINGELING

Hence, if 2 ⩽ 𝑛 ⩽ 𝓁,

|𝑢𝑛−1||𝑢𝑛| =
(
𝑛 − 1

𝑛

)𝑘−1 |𝑞𝓁|−1 |1 − 𝑞𝑛𝓁||1 − 𝑞𝑛−1𝓁 |
⩽

(𝓁 − 1
𝓁

)𝑘−1 |𝑞𝓁|−1 1 + |𝑞𝓁|2
1 − |𝑞𝓁| ⩽ 𝑒−1

1 + 𝑒−2𝜋
√
3

1 − 𝑒−𝜋
√
3
<
1

2
.

Observe sgn 𝑢𝓁(
1

2
+ i𝑡𝓁) = (−1)

𝓁 . Writing

𝔾𝑘 =
(𝑢𝓁
2
+ 𝑢𝓁−1

)
+

⌈ 𝓁
2
−1⌉∑
𝑗=1

(𝑢𝓁−2𝑗 + 𝑢𝓁−2𝑗−1) +
(𝑢𝓁
2
+ 𝑢𝓁+1

)
+

∞∑
𝑗=1

(𝑢𝓁+2𝑗 + 𝑢𝓁+2𝑗+1),

wherewe set 𝑢0 = 0, we see that𝔾𝑘 is sumof nonzero termswith sign (−1)𝓁 . Hence, the statement
of the proposition follows in this case.
Next, we assume that 3𝓁2 ⩽ 𝑘. As we assumed that 1 ⩽ 𝓁 ⩽ ⌊𝑘

6
⌋, we observe that 𝑘 ⩾ 11. Write

𝔾𝑘(𝑧𝓁) = −
(𝑘 − 1)!

(2𝜋i)𝑘

∑
𝜇≫0

1

(𝑚𝑧𝓁 + 𝑛)
𝑘
=
(𝑘 − 1)!

(2𝜋)𝑘

(
2(−1)𝓁|𝑧𝓁|−𝑘 − 1

i𝑘
ℝ𝑘(𝑧𝓁)

)
with

ℝ𝑘(𝜏) ∶=
∑
𝜇≫0

𝜇∉{(1,−1),(1,0)}

1

(𝑚𝜏 + 𝑛)𝑘
.

It remains to show that the remainder ℝ𝑘(𝑧𝓁) is in absolute value smaller than the leading
contribution. By [5, Lemma 14 and 15], we obtain

|ℝ𝑘(𝑡𝓁)||𝑧𝓁|−𝑘 ⩽
5

8
+

∑
𝑚⩾2

𝑚1−𝑘
⎛⎜⎜⎝
(√

3

2

)−𝑘

+ 3
⎞⎟⎟⎠ ⩽ 5

8
+ (𝜁(10) − 1)

⎛⎜⎜⎝
(√

3

2

)−11

+ 3
⎞⎟⎟⎠ < 2

3
.

Hence, sgn𝔾𝑘(𝑧𝓁) = (−1)𝓁 . □

Proof of Theorem 1.4. The real-valued function 𝑡 ↦ 𝔾𝑘(
1

2
+ i𝑡) changes sign ⌊𝑘

6
⌋ − 1 times for

𝑡 ∈ (1
2

√
3,∞). Hence, additionally including the zero at i∞, we find that 𝔾𝑘 admits at least ⌊ 𝑘6 ⌋

zeros on. In case 𝑘 ≡ 3, 5, 11 mod 12, we find an additional sign change of𝔾𝑘(12 + i𝑡) on, since
the sign at 𝑡 = 1

2

√
3 and 𝑡 = 𝑡𝓁 with 𝓁 = ⌊ 𝑘

6
⌋ are different. □

Corollary 2.14. For all odd 𝑘, one has

𝑁∞(𝔾𝑘) =

{⌈𝑘
6

⌉
if 𝑘 ≡ 3, 5, 11 mod 12⌊𝑘

6

⌋
if 𝑘 ≡ 1, 7, 9 mod 12.
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ON THE ZEROS OF ODDWEIGHT EISENSTEIN SERIES 19 of 27

3 ZEROS IN ANY FUNDAMENTAL DOMAIN

3.1 Preliminaries

Recall Γ = SL2(ℤ). For 𝛾 =
(
𝑎 𝑏
𝑐 𝑑

)
∈ Γ, we have

𝐸𝑘|𝛾(𝜏) = ∑
𝜇=𝑚′𝜏+𝑛′

(𝑚′,𝑛′) = 1
𝜇≻0

1

((𝑎𝑚′ + 𝑐𝑛′)𝜏 + (𝑏𝑚′ + 𝑑𝑛′))𝑘

=
1

(𝑐𝜏 + 𝑑)𝑘
+

∑
(𝑚,𝑛)=1
𝑑𝑚>𝑐𝑛

1

(𝑚𝜏 + 𝑛)𝑘
, where

(
𝑚

𝑛

)
=

(
𝑎 𝑐

𝑏 𝑑

)(
𝑚′

𝑛′

)
,

and the slash action |𝛾 is defined by (4).
Assume 𝑐 < 0 and write 𝜆 = −𝑑

𝑐
. If 𝜆 ∉ {−1, 0, 1,∞}, then

𝐸𝑘|𝛾(𝜏) = 1 +
sgn(𝜆)

𝜏𝑘
+
sgn(𝜆 + 1)

(𝜏 + 1)𝑘
+
sgn(𝜆 − 1)

(𝜏 − 1)𝑘
+ 𝑅𝑘,𝜆(𝜏), (16)

where 𝑅𝑘,𝜆 contains all terms in 𝐸𝑘|𝛾 with𝑚2 + 𝑛2 ⩾ 5. In the special cases, we obtain

𝐸𝑘|𝛾(𝜏) = 1 −
1

𝜏𝑘
+

1

(𝜏 + 1)𝑘
−

1

(𝜏 − 1)𝑘
+ 𝑅𝑘,0(𝜏) (𝜆 = 0),

𝐸𝑘|𝛾(𝜏) = 1 +
1

𝜏𝑘
+

1

(𝜏 + 1)𝑘
−

1

(𝜏 − 1)𝑘
+ 𝑅𝑘,1(𝜏) (𝜆 = 1).

Similarly,

𝔾𝑘|𝛾(𝜏) ∝ 𝐸𝑘|𝛾(𝜏) − 1

(𝑐𝜏 + 𝑑)𝑘
= 1 +

sgn(𝜆)

𝜏𝑘
+
sgn(𝜆 + 1)

(𝜏 + 1)𝑘
+
sgn(𝜆 − 1)

(𝜏 − 1)𝑘
+ ℝ𝑘,𝜆(𝜏), (17)

where ℝ𝑘,𝜆(𝜏) = 𝑅𝑘,𝜆(𝜏) −
1

(𝑐𝜏+𝑑)𝑘
. Note that, with the same proof as in Lemma 2.8, we have

|𝑅𝑘,𝜆(𝜏)| ⩽ 6
√
5

(5∕2)𝑘∕2
(𝑘 ⩾ 11 and 𝜏 ∈ ). (18)

We now set out to prove Theorem 1.1 by explicitly computing VOA (𝐸𝑘|𝛾) for  ∈ {,,} as
a function of 𝜆 = 𝛾−1(∞). That is, we prove the correctness of the values summarized in Table 1.
As before, to do so, we aim to control the vanishing of the real or imaginary part of 𝐸𝑘 or 𝐸𝑘, as we
do in a series of lemmas. As we will see, in many cases, the same ideas apply to 𝔾𝑘 instead of 𝐸𝑘
and ℝ𝑘,𝜆 instead of 𝑅𝑘,𝜆, respectively.

3.2 The case 𝝀 > 𝟏

Lemma 3.1. For all 𝜆 > 0, the value Im𝐸𝑘|𝛾(𝜃) is nonzero for 𝜃 ∈ [𝜋∕3, 2𝜋∕3].
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20 of 27 VAN ITTERSUM and RINGELING

Proof. As 𝜆 > 0, we can assumewithout loss of generality that 𝑑 > 0 and 𝑐 < 0. Note that if𝑚, 𝑛 ⩾
0 are coprime, then both (𝑚, 𝑛) and (𝑛,𝑚) are contained in the domain of summation of the sum
in (16). Therefore,

|Im𝑅𝑘,𝜆(𝜃)| =
|||||||||||

1

(𝑐𝜏 + 𝑑)𝑘
+

∑
(𝑚,𝑛)=1
𝑑𝑚>𝑐𝑛
𝑚𝑛<0

Im
1

(𝑚𝑒i𝜃∕2 + 𝑛𝑒−i𝜃∕2)𝑘

|||||||||||
⩽ 𝐼𝑘(𝑒

i𝜃),

where 𝐼𝑘 is defined by (13) and the inequality follows from the observation that

{(𝑚, 𝑛) ∈ ℤ2 ∣ 𝑑𝑚 > 𝑐𝑛 and𝑚𝑛 < 0} ∪ {(𝑐, 𝑑)} → {(𝑚, 𝑛) ∈ ℤ2 ∣ 𝑚 > 0, 𝑛 < 0}

(𝑚, 𝑛) ↦

{
(𝑚, 𝑛) if𝑚 > 0

(−𝑚,−𝑛) if𝑚 < 0

defines a bijection. Observe

Im𝐸𝑘|𝛾(𝜃) = 𝜖(𝑘, 𝜆)

(2 sin 1

2
𝜃)𝑘

+ Im𝑅𝑘,𝜆(𝜃),

where the sign 𝜖(𝑘, 𝜆) is given by 𝜖(𝑘, 𝜆) = sgn(𝜆 − 1)(−1)(𝑘+1)∕2. By Lemma 2.5 and the same
proof of Lemma 2.6, the result follows. □

Lemma 3.2. For all 𝜆 > 1 and 𝑘 ⩾ 11, the value Re𝐸𝑘|𝛾(𝜏) is nonzero for 𝜏 ∈ .
Proof. Observe that for 𝜏 ∈ , we have

Re𝐸𝑘|𝛾(𝜏) = 1 + Re
1

(𝜏 + 1)𝑘
+ Re𝑅𝑘,𝜆(𝜏).

and

|𝑅𝑘,𝜆(𝜏)| ⩽ 6
√
5

(5∕2)𝑘∕2
<
1

2
.

Also, note that Re (( 1
2
+ i𝑡) + 1)−𝑘 ⩽ 1

2
for all 𝑘 ⩾ 1 and 𝑡 ⩾ 1

2

√
3. We conclude (Re 𝐸𝑘|𝛾)(𝜏) > 0

for all 𝜏 ∈  if 𝜆 > 1 and 𝑘 ⩾ 11. □

These first two lemmata suffice to generalize Proposition 2.7, that is, to prove Theorem 1.1
for 𝜆 > 1 (see also Table 1).

Proposition 3.3. For all 𝜆 > 1 and 𝑘 ⩾ 3 one has

𝑁𝜆(𝐸𝑘) = Round
(
𝑘

12

)
= 𝑁𝜆(𝔾𝑘).
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ON THE ZEROS OF ODDWEIGHT EISENSTEIN SERIES 21 of 27

Proof. We compute

(𝐸𝑘|𝛾)(𝜌) = ⎧⎪⎨⎪⎩
1 𝑘 ≡ 0 mod 3
1 − i

√
3 𝑘 ≡ 1 mod 3

1 + i
√
3 𝑘 ≡ 2 mod 3

+
1(

−3

2
+ 1

2
i
√
3
)𝑘 + 𝑅𝑘,𝜆(𝜌),

and similarly for (𝐸𝑘|𝛾)(𝜌 + 1). Hence, using (18), we obtain
|(𝐸𝑘|𝛾)(𝜌) − (𝐸𝑘|𝛾)(𝜌 + 1)| < 2

3𝑘∕2
+

12
√
5

(5∕2)𝑘∕2
<

30

(5∕2)𝑘∕2
.

By Lemma 2.4 and Lemma 3.2, this implies that

||VOA(𝐸𝑘|𝛾) + VOA(𝐸𝑘|𝛾)|| < 30

(5∕2)𝑘∕2
.

Moreover, by Lemma 3.1,

VOA(𝐸𝑘|𝛾) ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− 1

12
𝑘 ≡ 1 mod 12

−1

4
𝑘 ≡ 3 mod 12

− 5

12
𝑘 ≡ 5 mod 12

5

12
𝑘 ≡ 7 mod 12

1

4
𝑘 ≡ 9 mod 12

1

12
𝑘 ≡ 11 mod 12.

More precisely,

|||||VOA(𝐸𝑘|𝛾) − (
Round

(
𝑘

12

)
−
𝑘

12

)||||| < 30

(5∕2)𝑘∕2
.

Hence,

|||||VOA(𝐸𝑘|𝛾) − Round

(
𝑘

12

)||||| < 30

(5∕2)𝑘∕2
. (19)

As

𝑁𝜆(𝐸𝑘) =
(
VOA + VOA + VOA

)
(𝐸𝑘|𝛾)

is an integer, the statement follows for 𝑘 ⩾ 13. By improving the error estimates for small 𝑘, one
obtains the same result for all 𝑘 ⩾ 3.
Recall 𝔾𝑘 is proportional to 𝐸𝑘 up to the summand

1

(𝑐𝜏+𝑑)𝑘
with − 𝑐

𝑑
= 𝜆 > 1 (see (17)). Now,

since 𝑐2 + 𝑑2 ⩾ 5, this term is taken care of in the error estimates, from which we conclude that
Lemma 3.1, Lemma 3.2, and this result also hold for 𝔾𝑘 if 𝜆 > 1. □
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22 of 27 VAN ITTERSUM and RINGELING

3.3 The case 𝝀 = 𝟎

Lemma 3.4. For 𝜆 = 0 and 𝑘 ⩾ 11, the value

∙ Re𝐸𝑘|𝛾(𝜏) is nonzero for 𝜏 ∈ ;
∙ Re𝐸𝑘|𝛾(𝜏) is nonzero for 𝜏 ∈ .
Here, 𝛾 is such that 𝜆(𝛾) = 0.

Proof. Note

Re𝐸𝑘|𝛾(𝜃) = 1

(2 cos 1
2
𝜃)𝑘

+ Re𝑅𝑘,0(𝜃).

Now, similar as to Lemma 2.5, we estimate for all 𝑘 ⩾ 9

|Re𝑅𝑘,0(𝜃)| ⩽ 4
√
10

5𝑘∕2
+

{
2 ⋅ 3−𝑘∕2 𝜃 ∈ [𝜋∕3, 𝜋∕2]

2 ⋅ 5−𝑘∕2 𝜃 ∈ [𝜋∕2, 2𝜋∕3].

Hence, by a similar argument as in Lemma 2.6, we conclude that Re𝐸𝑘|𝛾(𝜃) ≠ 0 for 𝑘 ⩾ 11.
For the second statement, let 𝜏 ∈  and note that

Im
1

𝜏𝑘
+ Im

1

(𝜏 − 1)𝑘
= 0

and |𝜏 + 1|−𝑘 ⩽ 3−𝑘∕2. Hence, we obtain

Im𝐸𝑘|𝛾(𝜏) = 1 +
1

(𝜏 + 1)𝑘
+ 𝑅𝑘,0(𝜏) ⩾ 1 −

1

3𝑘∕2
−

6
√
5

(5∕2)𝑘∕2
,

which implies the second part for 𝑘 ⩾ 11. □

Proposition 3.5. For all odd 𝑘 ⩾ 11

𝑁0(𝐸𝑘) =

⎧⎪⎪⎨⎪⎪⎩

⌊
𝑘

12

⌋
if 𝑘 ≡ 1, 7, 9 mod 12⌈

𝑘

12

⌉
if 𝑘 ≡ 3, 5, 11 mod 12.

Proof. Let 𝛾 be such that 𝜆(𝛾) = 0. We compute

(𝐸𝑘|𝛾)(𝜌 + 1) = ⎧⎪⎨⎪⎩
1 𝑘 ≡ 0 mod 3
1 + i

√
3 𝑘 ≡ 1 mod 3

1 − i
√
3 𝑘 ≡ 2 mod 3,

+
1(

3

2
+ 1

2
i
√
3
)𝑘 + 𝑅𝑘,0(𝜌 + 1).
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ON THE ZEROS OF ODDWEIGHT EISENSTEIN SERIES 23 of 27

Recall 𝐸𝑘|𝛾(𝑖∞) = 1 and Re𝐸𝑘|𝛾(𝜏) is nonzero for 𝜏 ∈ . Hence,

VOA(𝐸𝑘|𝛾) ≈
⎧⎪⎪⎨⎪⎪⎩
0 𝑘 ≡ 0 mod 3
−1

6
𝑘 ≡ 1 mod 3

1

6
𝑘 ≡ 2 mod 3,

where the error is bounded in absolute value by 6
√
5

(5∕2)𝑘∕2
. Moreover, we compute

(𝐸𝑘|𝛾)(𝜌) = −1 + 3𝛿3∤𝑘 −
1(

−3

2
+ 1

2
i
√
3
)𝑘 + 𝑅𝑘,0(𝜌),

where it can be computed that

sgn Im𝐸𝑘|𝛾(𝜌) = (−1)(𝑘−3)∕6 if 3 ∣ 𝑘.

Hence,

VOA(𝐸𝑘|𝛾) ≈
⎧⎪⎪⎨⎪⎪⎩

1

2
𝑘 ≡ 3 mod 12

−1

2
𝑘 ≡ 9 mod 12

0 3 ∤ 𝑘,

where the error is bounded in absolute value by 12
√
5

(5∕2)𝑘∕2
. Finally, we find

VOA(𝐸𝑘|𝛾) ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

12
𝑘 ≡ 1 mod 12

1

4
𝑘 ≡ 3 mod 12

5

12
𝑘 ≡ 5 mod 12

− 5

12
𝑘 ≡ 7 mod 12

−1

4
𝑘 ≡ 9 mod 12

− 1

12
𝑘 ≡ 11 mod 12,

where the error is bounded in absolute value by 12
√
5

(5∕2)𝑘∕2
. Hence, by (7) for 𝑓 = 𝐸𝑘|𝛾, we obtain

the desired result (note 𝑁∞(𝑓|𝛾) = 𝑁𝜆(𝑓)). For 𝑘 ⩽ 11, the same result can be obtained by more
careful error estimates. □

3.4 The case 𝟎 < 𝝀 < 𝟏

In case 0 < 𝜆 < 1, the variation of the argument on  may be nontrivial, that is, cannot directly
be deduced from the nonvanishing of the real/imaginary part of 𝐸𝑘|𝛾 on. Instead, we split in
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24 of 27 VAN ITTERSUM and RINGELING

two segments, and show such a result for the real part on the one segment, and for the imaginary
part on the other.

Lemma 3.6. For 0 < 𝜆 ⩽ 1 and 𝑘 ⩾ 19, the value Im𝐸𝑘|𝛾(𝜏) is nonzero for 𝜏 = 𝜌 + 1 + i𝑡 ∈ with
0 < 𝑡 < 𝜋

2𝑘
. Moreover, its sign is given by sgn(1

2
− 𝜆)(−1)

𝑘−1
2 .

Proof. For 𝜏 ∈ , we have

Im𝐸𝑘|𝛾(𝜏) = Im
1

(𝜏 + 2)𝑘
+ Im

1

(2𝜏 + 1)𝑘
+ Im

sgn
(
1

2
− 𝜆

)
(−2𝜏 + 1)𝑘

+ Im𝑅𝑘,𝜆(𝜏),

where 𝑅𝑘,𝜆 consists of all terms with 𝑚2 + 𝑛2 ⩾ 10. Using a similar argument as in the proof of
Lemma 3.2, we find for 𝑘 ⩾ 15

|𝑅𝑘,𝜆| ⩽ 2
∑
𝑚,𝑛>0

𝑚2+𝑛2⩾10
(𝑚,𝑛)=1

1|𝑚𝜏 + 𝑛|𝑘 ⩽ 2
∑
𝑁⩾10

𝑁1∕2(
1

2
𝑁
)𝑘∕2 ⩽

16
√
10

3 ⋅ 5𝑘∕2
(𝜏 ∈ ).

Since both |2𝜏 + 1|2 and |𝜏 + 2|2 are bounded from below by 7 for 𝜏 ∈ , we find that
|||||||Im𝐸𝑘|𝛾(𝜏) − Im

sgn
(
1

2
− 𝜆

)
(1 − 2𝜏)𝑘

||||||| ⩽
19

5𝑘∕2
.

Clearly, for 𝜏 = 𝜌 + 1 + i𝑡,

Im
sgn

(
1

2
− 𝜆

)
(1 − 2𝜏)𝑘

=
sgn

(
1

2
− 𝜆

)
(−1)

𝑘−1
2

(
√
3 + 2𝑡)𝑘

,

and this quantity is bounded in absolute value from below by 1∕(
√
3 + 𝜋

𝑘
)𝑘 for 0 < 𝑡 < 𝜋

2𝑘
. By the

reverse triangle inequality, we conclude that

||Im𝐸𝑘|𝛾(𝜏)|| ⩾ 1(√
3 + 𝜋

𝑘

)𝑘 − 19

5𝑘∕2
.

If 𝑘 ⩾ 19, the right-hand side is positive and therefore Im𝐸𝑘|𝛾(𝜏) is nonzero for 0 < 𝑡 < 𝜋

2𝑘
. □

Lemma 3.7. For 0 < 𝜆 ⩽ 1 and 𝑘 ⩾ 9, the value Re𝐸𝑘|𝛾(𝜏) is nonzero for 𝜏 = 𝜌 + 1 + i𝑡 ∈  with
𝑡 > 𝜋

2𝑘
.

Proof. Using (16), we find the approximation

Re𝐸𝑘|𝛾(𝜏) = 1 + 2Re
1

𝜏𝑘
+ Re

1

(𝜏 + 1)𝑘
+ Re𝑅𝑘,𝜆(𝜏)
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ON THE ZEROS OF ODDWEIGHT EISENSTEIN SERIES 25 of 27

for 𝜏 ∈ . As in the proof of Lemma 3.2, we have the estimate

|𝑅𝑘,𝜆(𝜏)| ⩽ 6
√
5

(5∕2)𝑘∕2
.

From the bounds |𝜏 + 1|2 ⩾ 3 and |𝜏|2 ⩾ 1

4
+ (1

2

√
3 + 𝜋

2𝑘
)2, we get the following lower bound for

the real part of 𝐸𝑘|𝛾:
|Re𝐸𝑘|𝛾(𝜏)| ⩾ 1 −

6
√
5

(5∕2)𝑘∕2
−

1

3𝑘∕2
−

2(
1

4
+

(
1

2

√
3 + 𝜋

2𝑘

)2)𝑘∕2
for 𝑡 > 𝜋

2𝑘
. It can be checked that the left-hand side is positive if 𝑘 ⩾ 9.We conclude thatRe𝐸𝑘|𝛾(𝜏)

is nonzero for 𝑡 > 𝜋

2𝑘
. □

Proposition 3.8. For odd 𝑘 ⩾ 19 and 0 < 𝜆 ⩽ 1, the value𝑁𝜆(𝐸𝑘) is as in Table 1. Moreover, further
assuming 𝜆 ≠ 1, we obtain𝑁𝜆(𝔾𝑘) = 𝑁𝜆(𝐸𝑘).
Proof. First, assume 1

2
< 𝜆 ⩽ 1. As before, we find

(𝐸𝑘|𝛾)(𝜌) = ⎧⎪⎨⎪⎩
−1 + i

√
3 𝑘 ≡ 1 mod 3

−1 − i
√
3 𝑘 ≡ 2 mod 3

−1 𝑘 ≡ 0 mod 3
+

1(
−3

2
+ 1

2
i
√
3
)𝑘 + 𝑅𝑘,𝜆(𝜌).

Recall 𝐸𝑘|𝛾(i∞) = 1. By a careful analysis as before, using Lemma 2.4 and the fact that for 𝜏 ∈ ,
𝐸𝑘|𝛾(𝜏) = 𝐸𝑘|�̃�(𝜏 + 1)

for some �̃� ∈ SL2(ℤ) with 𝜆(�̃�) = 𝜆(𝛾) + 1 and 𝜏 + 1 ∈ , we find

VOA(𝐸𝑘|𝛾) ≈ ⎧⎪⎨⎪⎩
0 𝑘 ≡ 0 mod 3
−1

6
𝑘 ≡ 1 mod 3

1

6
𝑘 ≡ 2 mod 3,

where the error is bounded in absolute value by 6
√
5

(5∕2)𝑘∕2
.

Next, we have

(𝐸𝑘|𝛾)(𝜌 + 1) = 1 − 3𝛿3∤𝑘 +
1(

3

2
+ 1

2
i
√
3
)𝑘 + 𝑅𝑘,𝜆(𝜌 + 1).

Write 𝛼𝑘 = 𝛼 = 𝜌 + 1 +
𝜋

2𝑘
i. Then, by the estimates in Lemma 3.6 and 3.7 for 𝑘 ⩾ 19, we find

|Im (𝐸𝑘|𝛾)(𝛼)| ⩽ 1

3𝑘∕2
, Re (𝐸𝑘|𝛾)(𝛼) ⩾ 4

9
.
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TABLE 2 The (special) values of 𝑁𝜆(𝔾𝑘).

k mod 12 𝝀 = 𝟎 𝝀 = ±𝟏 𝝀 = ∞

1 0
⌊
𝑘

12

⌋ ⌊
𝑘

6

⌋
3 0

⌊
𝑘

12

⌋ ⌈
𝑘

6

⌉
5 0 𝑘+1

12

⌈
𝑘

6

⌉
7 0 𝑘−1

12

⌊
𝑘

6

⌋
9 0

⌈
𝑘

12

⌉ ⌊
𝑘

6

⌋
11 0

⌈
𝑘

12

⌉ ⌈
𝑘

6

⌉

Hence, by Lemmas 2.4, 3.6, and 3.7, we obtain

VOA𝑅(𝐸𝑘|𝛾) ≈ ⎧⎪⎨⎪⎩
0 3 ∤ 𝑘

−1

2
𝑘 ≡ 3 mod 12

1

2
𝑘 ≡ 9 mod 12

with the error bounded in absolute value by 4 ⋅ 3−𝑘∕2−2. Together with the variation of the argu-
ment on , given by (19), this gives the desired result for 𝑁𝜆(𝐸𝑘|𝛾) for 12 < 𝜆 ⩽ 1 and 𝑘 ⩾ 19. By
improving the error estimates, we obtain the same result for 𝑘 ⩾ 3.
The case 0 < 𝜆 ⩽ 1

2
goes analogously. The different outcome is caused by a sign change in

VOA(𝐸𝑘|𝛾) due to a sign change in Im𝐸𝑘|𝛾 (see Lemma 3.6).
Finally, not that the difference of 𝐸𝑘 and 𝔾𝑘 is contained in the remainder 𝑅𝑘,𝜆 if 𝜆 ≠ 1. Hence,

the same results hold for 𝔾𝑘. □

3.5 Proof of Theorem 1.1 and Theorem 1.3

Proof of Theorem 1.1 and Theorem 1.3. Observe that 𝑁𝜆(𝐸𝑘) is already computed in many cases:
𝜆 = ∞ (Proposition 2.7), 𝜆 > 1 (Proposition 3.3), 0 < 𝜆 ⩽ 1 (Proposition 3.8), and 𝜆 = 0 (Propo-
sition 3.5). Moreover, for 𝜆 ∈ ℙ1(ℚ)∖{0, ±1,∞}, these results give the value of 𝑁𝜆(𝔾𝑘). Hence, it
would suffice to extend these results to negative values of 𝜆.
Now, observe that all Fourier coefficients of 𝑖𝔾𝑘 are purely real. Namely, in contrast to 𝐸𝑘, the

constant term of 𝔾𝑘 vanishes. Hence, by Lemma 2.2, we conclude that

𝑁𝜆(𝔾𝑘) = 𝑁−𝜆(𝔾𝑘)

for all 𝜆 ∈ ℚ. By similar arguments as in the aforementioned propositions, we find that

𝑁−𝜆(𝐸𝑘) = 𝑁−𝜆(𝔾𝑘)

as long as 𝜆 ∈ ℙ1(ℚ)∖{0, ±1,∞}. □

Remark. For 𝜆 ∈ {0, ±1,∞}, we expect that𝑁𝜆(𝔾𝑘) equals the value that can be found in Table 2.
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Of these boundary cases, only the case 𝜆 = ∞ is proven in this work. We invite the reader to prove
the other cases.
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